
2.6 kbar, which are similar to those indicated in [i]. One should thereby note that glass 
withstands rather large tensile stresses (up to 6 kbar) not only within the medium but also 
on the boundaries (along =he ray direction), and consequently we are dealing with a material 
whose strength is arbitrary and is determined by defects located on the surface (a case of 
fracturing from an internal defect occurred in one of the 82 experiments). It is necessary 
for an accurate determination of the strength characteristics of a material to have even more 
accurate data on the stress state at the fracture point. 
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CONSTRUCTION OF THE TIME DEPENDENCE OF THE RELAXATION OF 

TANGENTIAL STRESSES ON THE STATE PARAMETERS OF A MEDIUM 

L. A. Merzhievskii and S. A. Shamonin UDC 539.3 

A change in the stress state of real rigid bodies can occur not only as a result of move- 
ment of the medium but also in the absence of any macroscopic displacements of the medium at 
all and inflow or outflow of heat from its elements. It was proposed by Maxwell to character- 
ize this process as a decrease of the tangential stresses, and the concept of their relaxa- 
tion time has been introduced. These ideas underwent further development in [1-3], in the 
first of which a representation of the relaxation time T of the tangential stresses is 
discussed from the molecular-kinetic viewpoint, and in the other models are formulated and 
analyzed of media having a nonlinear dependence of T on the temperature and stresses. Un- 
fortunately, methods are presently lacking for direct experimental determination of the 
relaxation time in the case of intensive dynamic loads. In order to determine T, it is neces- 
sary to use indirect experimental data, including at the same time different models of a 
deformable rigid body. An interpolatlon formula of the dependence for some metals derived 
on the basis of information existing in the literature about the dependence of the dynamic 
yield point ~r and the tensile strength limit on the deformation rate e has been given in [4] 
and then refined in [5]. A dependence of the relaxation time of the tangential stresses on 
their strength o, the values of the shear (plastic) strain, and the temperature T is con- 
structed in this paper on the basis of dislocation concepts concerning the mechanism of the 
relaxation process with the inclusion of a model of a viscoelastic body [3] and experimental 
data similar to that used in [4, 5]. 
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5, pp. 170-179, September-October, 1980. Original article submitted March 28, 1980. 
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Either the metric strain tensor gil or the Almansi strain tensor cij = I/3(~ i-- gil), 
where ~ij is the Kronecker symbol, is used in [3]. We will restrict ourse• o j~^ �9 t ~onsi~era- 
tion of small strains, in which case the Almansi tensor coincides with the tensor of small 
strains introduced in the traditional way. We will represent the strain tensor in the form 
of a sum of elastic eij and plastic sij strain tensors 

8~j = e~y + s t .  ( 1 )  

Within the framework of this paper it is sufficient to restrict oneself to consideration of 
the problem of the strain of a circular rod. The cylindrical coordinate system which is a 
natural choice for this problem coincides with the principal axes of the strain tensor, which, 
llke the stress tensor, takes on a diagonal form in this case and is characterized by the 
components El, i = i, 2, 3. Equation (i) takes the form 

8s ~ e i "~ $i-  

The maximum plastic strain s (the principal value of the plastic strain tensor) is determined 
in terms of si: 

s = ~ 1  - -  ~1) /2  = @1 - -  ss)/2 = 3s l /4  = - - 3 s d 2  

and occurs in the plane of maximum tangential stress. Since relaxation of the tangential 
stresses is completed in the process of plastic strain, it is natural to assume that the 
relaxation time is proportional to the inverse of the maximum plastic strain rate: 

T ,-,  i / (ds /d t ) .  

Plastic strain is accomplished by means of the motion of dislocations, and its rate is a func- 
tion of the characteristics of the system of moving dislocations as given by the Orovan rela- 
tion: 

ds/dt  = b N v ,  

where N and v are the density of fixed dislocations per unit volume and their average veloc- 
ity and b is the modulus of the Burgers vector, whence 

T . . ,  t / ( b N v ) .  ( 2 )  

The averaged characteristics of an ensemble of dislocations N and v are in turn functions of 
the strength of the tangential stresses o, the value of the plastic strain s, and the tempera- 
ture T. 

Depending upon the level of the temperature and stresses caused by the external load, 
motion of the dislocations can take place in three modes which differ qualitatively from each 
other. When the loads are relatively small in comparison with the yield point of the mate- 
rial, creeping of the dislocations occurs -- a phenomenon which is of a diffusion nature and 
which proceeds at the rates of diffusion processes. The behavior of materials under such 
conditions, including relaxation of tangential stresses, has been described within the frame- 
work of models of creep theory. If the strength of the tangential stresses is close to the 
static yield point, the rate of movement of the dislocations is determined by thermoactiva- 
tion of transverse glide of the dislocations -- the region of so-called thermoactivated sub- 
barrier glide. As the external stresses are increased further, continuous suprabarrier glide 
of the dislocations occurs, by means of which the final plastic strains of metals are realized. 
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TABLE i 

T, E t95 300 493 7!3 . li00 1300 1500 

lg a --2,93 --5,64 --8,94 --1t,92 --0,i7 --t,44 --0,39 
Fe 

~o, GPa 5,45 5,30 5,35 5,32 0,64 0,5 0,t 

8, % 2,5 II 9,4 l i , l  t5,1 26,4 29,7 

90O T, t~ 

Cu lg a 

(~o, GPa 

400 

- - 6 , 3  

2,0 

600 800 

J 
--4,35 --3,17 

t,2 . 0,64 

t000 

--2,94 A1 

0,32 

T , E  

lg a 

%, GPa 

300 

--4,43 

i,37 

500 

--2,56 

0,671 

--2,87 

0,08 

3 

The last mode of dislocation movement, which has been least investigated experimentally and 
theoretically, is the most interesting from the point of view of the investigation of the 
relaxation processes of tangential stresses, since it corresponds to the region of maximally 
steep nonlinear variation of the time dependence of relaxation on the state parameters of a 
medium. The main experimental results which are the basis for construction of model descrip- 
tions of the process of movement and multiplication of dislocations are obtained in [6]. 
Here the maximally broad region of variation of the rates of movement of dislocations (right 
up to 1 km/sec) has evidently been investigated for stresses much greater than the static 
yield point of the material. As a result of the interpretation of the experimental data, 
expressions are obtained for the average rate of movement of dislocations 

v = vo exp [ - -  (~o + Hs)/~l ( 3 )  

and the number of stationary dislocations 

N = N O + M s  (4) 

where vo is the maximum possible rate of movement of the dislocations, which is equal to the 
velocity of shear waves; oo, characteristic deceleration stress; H, coefficient of strain 
reinforcement; No, initial density of stationary dislocations; and M, multiplication coef- 
ficient. Equations (3) and (4) are used in [7, 8] to explain the phenomenon of the damping 
of the amplitude of the elastic precursor and to describe the behavior of metals when im- 
pacted. The good agreement obtained between the experimental and calculated data provides 
a basis for using (3) and (4) as the fundamental expressions of a theory of dislocatioff 
dynamics. 

Another form of the interpolation functions has been used in [9] in connection with an 
investigation of the profile of viscoelastic waves in aluminum: 

N = No[t  + (Qs/bN1)] exp (--~s); (5)  

v = Vo~'/(l + 8~), 8 = (~ - -  ~s)/~k, ( 6 )  

where N~ is the initial density of all dislocations; u s, s~atic yield point of the material; 
and Q, ~, Ok, and n, some constants associated with the initial state of the material. The 
use of these dependences also leads to good agreement of the calculated and experimental 
data. 

Equations (3) and (4) or (5) and (6) together with (2) permit establishing the form of 
the function which relates the relaxation time T to the parameters characterizing the stress-- 
strain state of a medium. We will assume that 

T = a / (bNv) ,  (7) 

where a is a coefficien~ of proportionality still subject to determination. One should note 
that the parameters entering into Eqs. (3)-(6) and the coefficient a depends on the tempera- 
ture, which permits constructing the function T(u, s, T). 
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Direct determination of the quantities appearing in the formulas which describe the 
dynamics of dislocations is a complicated experimental problem. At present reliable data 
on their values are known only for Armco iron [7, 8] and a single brand of aluminum [9]. 
These parameters have bean calculated in [i0] on the basis of experimentally determined 
static dependences of the stresses on the strain. The possibility of using the parameters 
found in this way in the case of deformation at high rates remains unclear. 

We will determine the parameters appearing in (7) (this means in (3)-(6)) on the basis 
of "numerical experiments" on the uniaxial strain of a thin rod. Formulation of the problem 
in a model of a Maxwellian-type viscoelastic body was discussed in [5j ii]. The problem 
reduces to the solution of the system of equations 

d ~ / d t  = ~ - -  (~  - -  d)/~, ( 8 )  

de/dt  = 4c2[ (a  - -  d) 2 + (~ - -  d) 2 "-J- (?  ~ d)2] /2TT.  

where d = (a + ~ + 7)/3; a, S, and 7 are the logarithms of the relative expansions along the 
longitudinal and transverse coordinate axes, respectively, c is the propagation velocity of 
transverse waves, and e is the entropy density per unit mass. The system (8) is supplemented 
by the equation of state of the material in the form of the dependence of the internal energy 
density E = E(a, B, 7, e), by the Murnaghan formulas 

a ,  = paE/O~,  o~ = pOE/O~, a3 = pOE/a?,  T = d E / a e  ( 9 )  

(o i (i = i, 2, 3) are the stresses and 0 is the density), and by the relationships 

a~ -- aa = O, ~ ---- 7. (i0) 

As a result of the solution of the problem (8)-(10) with specified ~ = const and r = x(o, s, 
T) o:(ex) -- the stress--strain diagram of the material -- is determined, which one can compare 
with the appropriate experimental dependence. 

Due to the presence on the right-hand side of the first equation of the function T(o, 
s, T), which varies sharply over a large range of values, system (8) is a rigorous auton- 
omous system of ordinary differential equations. The ratio of the maximum and minimum 
eigennumbers of its Jacobian matrix is of the order of ~10 3 . The application of explicit 
methods of the Runge--Kutta and Adams type for the solution of such systems is made more 
difficult due to the strong restriction on the integration step over the entire computational 
interval, which is caused by the requirement of stability of the numerical solution. Special 
efficient methods of solution which permit significantly reducing the computation time are 
being developed [12] for the solution of rigorous systems. The method of variable order and 
step constructed in [13] on the basis of A-stable Rosenbrock methods is used in this paper. 

Let a rigorous system of K ordinary differential equations be given with the initial 
data 

d y / d t  .... /(Y), Y(~) = go. Y = (Y~ . . . . .  Y~ )- 

T h e  general form of the Rosenbrock formulas applicable to this system is as follows: 
~n 

( m )  ( m i , .  Y.+I  .... y , ,~ -  ~. p i  h~. k ~ - - h , , [ I - - h . a ~ A ( ~ ) t  - t / O h ) ,  
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~i = yn + ~ ~Ukj. " ~li = Yn + ~ itljki ( i n  2 . . . .  , m), 
j=: in: 

(m) 
where A(z) = 8f/ayly= z is =he aacobi matrix of the system under discussion, Yn+~ is the 
value of the function calculated by the m-stage method for time tn+~; Yn and hn, value of the 
function and the integration step at time in; and I, unit matrix with size K x K. The coef- 
ficients pi (m), ai, XiJ, and ~i{ are chosen such that the m-stage method has an order of ap- 
proxlmation equal =o m, is A-stable, and the number of calculations and inversions of the 
Jacobl matrix in a single integration step is a minimum. The numerical values of the coef- 
ficients of the method for the case m = 4 are given in [13]. 

The local error of the approximation is determined from the formula 

~.(m) .,~ = rain [ly~ ) - y ~ ) l ] ,  m = i ,  2 , 3 ,  
m<j~4 

where [[ ]] is the maximum norm of the vector. The integration step for time tn+~ is chosen 

so that the inequality 
" (~) <~ a (e/cm) l/m, m = t ,  2, 3, ~.+1 (ii) 

is satisfied, where e is the required accuracy of the solution and c m are some constants 
given in [13]. Prediction of the integration step is done on the basis of the inequality 

6(m) ~ (e!c~)lt~lq~(~+l), (12) yn+l~-~8 

which is obtained in connection with the investigation of the local approximation error. If 
this inequality is satisfied for some i and q (i is a natural number, q is a real number), 
then the integration step can be increased by a factor of ql. When (1~) is not satisfied for 
any values of m, it is necessary to decrease the step by a factor of q|i[, where i is the 
maximum integral negative number for which (12) is valid. The same m-stage method for which 
the maximum step is predicted is used for the calculatlons at the next step. When (12) is 
satisfied, the value y~ is taken for the value of the desired function at the point in+ I = 

t n + hnq I. 

The method outlined with m~4 was used to solve the system (8)-(10). The algebraic 
equation which enters into this system was solved at each time step by Newton's method. The 
dependence of the elastic energy on the compression parameters in the case of a nonspherlcal 
strain tensor which is given in [14] was used in solving the problem. The computational re- 
sults for iron at room temperature with Eqs. (3) and (4) and the values of the parameters ap- 
pearing in them which are given in [8] are shown in Fig. 1 in the form of the dependence 
oz(ez). The quantity a in (7) was chosen by the method outlined above. Curves 1-5 corre- 
sponds to values of i0, i0 a, ..., I0 s for the strain rate. The form of the dependences ob- 
tained is characteristic for an ideal elastoplastic medium: there is a section of linear de- 
pendence between stress and strain and a section of an increase of the strain with an inap- 
preciable change in the stress. Some decrease of the stress with an increase in the sKraln 
is explained by stress relaxation due to heating of the medium upon plastic strain. Com- 
parison of the calculated values of the dynamic yield points with the experimental data for 
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soft steel [15] 
ment, notwithstanding the difference in the brands of iron used in [8, 15]. 

Now we will consider the problem of finding the parameters which enter into Eq. (7). 
One can obtain a number of calculated values of the dynamic yield point aci by conducting 
numerical experiments on the uniform deformation of a thin rod at different fixed strain 
rates. Due to the peculiarities of the computational model selected, these values will de- 
pend on ~ and the values of the parameters in the equations which determine the dynamics of 
dislocations (co, H, No, and M in (3) and (4) and N@, Q, X, Uk, and n in (5) and (6)), as well 
as the values of a in (7). Having denoted the set of all these parameters as rl, ..., rk, 
where k is equal to 5 or 6, depending upon the equations used, and taking account of the 
fact that the values of r i themselves (i = 1, ..., k) vary as the temperature at which the 
experiment is performed changes, one can write that aci = aci(Ci, rt(T), ..., rk(T)). Now 
if a set of the actual values of the yield point Ori(Si), i = I, ..., F is known for a given 
material and temperature from a physical experiment, then we introduce the function 

F 

R (rl (r), ..., rk (r)) =  01', 
which determines the sum of the squares of the deviations of the experimental values of the 
yield points from the calculated values. It is natural to assume those values for them which 
yield a minimum of the function R as the solution of the problem of finding the parameters r i 
(i = 1, ..., k) in Eq. (7) for the relaxatlon time, if this minimum is sufficiently close to 
zero. The gradient descent method was used to find the minimum of R(r), where r is a vector 
with the components (rl, ..., rk). Let rj be the value of r obtained in the J-th approxima- 
tion; then 

r1+ 1 = r j  - -  ho grad R(rl), 

where ho is determined from the condition 

R(r j  - -  h o grad R(r~)) = rain R(r~ - -  h grad R(r$)). 
�9 h > O  

The following computational algorithm was used in implementing this method on a computer: 
let us introduce the notation f(h) = rj -- h grad R(rj); then if R(f(h)) < R(rj), rj+1 = 
f(2gh), where g is the maximum natural number for which the inequality 

R(](2gh)) < R(f(2,-Xh)) 

i s  v a l i d .  I f  R ( f ( h ) ) > ~  R ( r j ) ,  r j  = f ( h / 2 W ) ,  where  m i s  t h e  minimum n a t u r a l  number f o r  which  
R ( f ( h / 2 m ) )  < R ( r j ) ,  i s  t a k e n  a s  t he  n e x t  a p p r o x i m a t i o n .  The c a l c u l a t i o n  i s  f i n i s h e d  e i t h e r  

when [R(rj)] < r or when ]R(rj+,) -- R(rj)[ < r where e ~ and r are some small quantities 
specified in advance. 

It is necessary in connection with the solution of the problem of finding the parameters 
which enter into (7) to minimize R(r) for 5-6 variables. As an analysis specially performed 
on the basis of the computational results shows, variation of the various parameters in (7) 
affects the value of the calculated yield point in different ways. Thus variation of the 
initial number of fixed dislocations in the range 10 s cm-a~ No ~_i09 cm -a with fixed values 
of the remaining parameters and e results in a change in Oci by 2-3% in all. This result can 
be explained by taking account of the difference between the values No and M (M/No ~ i04-105), 

(they are given in Fig. i in the form of dashed lines) shows their good agree- 
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TABLE 2 

lqletallT, ~ 

A1 300 
Fe 195 
Cu 300 

l g  a 

--9,4 
--4,9 
--7,7 

l g ( Q / N , )  

--5,85 
--4,35 
--4,65 

i 

% 

0,28 
0,28 
0,47 

4,73 
4,73 
4,48 

6,% 

14 
8 
9,4 

from which it follows that the initial number of fixed dislocations determines the value of 
the relaxation time only in a small neighborhood of the discontinuity, when the shear strain 
is very small. One can convince oneself from similar discussions that the rate of movement 
of the dislocations is determined by the value of the characteristic stress. This param- 
eter will evidently be most sensitive to a temperature change, by virtue of its direct con- 
nection with the value of the initial stress, and consequently with the height of the peaks 
of the potential relief of the crystalline lattice of the material. Taking account of the 
fact that (as indicated in [16, 17]) a variation of the temperature of the sample has no ap- 
preciable effect on the density of the dislocations responsible for plastic strain, one should 
assume that the main parameters to be varied in (7) should be uo(T) and u(T) in the case of 
Eqs. (3) and (4) or their analog when (5) and (6) are used. Numerical calculations have 
shown that the dependences ~c(~) obtained on the basis of the solution of the problem of 
minimization of the complete set of parameters and the two indicated practically coincide. 

It was not proven in the solution of this problem that R(r) has a single minimum or that 
the minimum found is an absolute one. The reliability of the parameter values obtained was 
estimated from the standpoint of their physical plausibility. Numerical experiments in which 
the initial values of the parameters being sought were varied over a physically realistic 
range for a number of temperatures have shown that the minimum found in such a region is 
unique. 

The data of the computations of the parameters a(T) and uo(T) are given in Table 1 for 
aluminum, copper, and iron. The maximum differences between the experimental Ur(~) and cal- 
culated Oc(S) dependences ~ are also indicated here for each case. These differences, which 
are sometimes rather large, refer most often to one of the values being compared and may be 
a consequence both of an inexactness of the discussion which has been carried out and a result 
of experimental scatter of the quantities. The most accurate representation of the differences 
between the calculated dependences and the experimental data gives the comparison of them over 
the entire range of variation of c which is shown in Fig. 2 (copper, curves 1-4 correspond to 
T = 400, 600, 800, and 1000~ Fig. 3 (aluminum, 1-3 correspond to T= 300, 500, and 900~ 
and Fig. 4 (iron, 1-7 correspond to T = 195, 300, 493, 713, ii00, 1300, and 1500~ the 
experimental values ~r are indicated here by open circles. As follows from Figs. 2-4, the 
calculations give a rather good description of the experimental dependences ~r(~). 

Whereas a(T) is a purely fitting parameter, a definite physical meaning is assigned to 
the quantity oo upon construction of the dependence (3). In this connection it appears neces- 
sary to analyze the dependences uo(T) found. An expression relating the characteristic de- 
celeration stress with the temperature has been obtained in [18] on the basis of an analysis 
of the interaction of dislocations with point defects: 

ao(T ) = B exp (--T/O)/T, (13) 

where e is a constant coefficient and B is a constant which depends on the lattice parameters, 
the dislocation branch, and the concentration of defects in the material. The validity of 
(13) has been verified in [19]; it is true for only one material and a relatively narrow 
range of low temperatures. Upon the appropriate choice of the quantities B and e the cal- 
culated values of oo(T) in the cases of aluminum and copper are described well by the depen- 
dence (13). A comparison is given in Fig. 5, where 1 corresponds to the calculated values 
of oo(T), and 2 corresponds to the values calculated from Eq. (13). In the case of iron the 
calculated dependence so(T) differs qualitatively from the preceding ones and (13) in that it 
maintains practically a constant value over a wide range of low temperatures. As the tempera- 
ture increases, the dependence oo(T) decreases sharply as T = 700~ is reached. The sharp 
drop continues until temperatures close to the temperature of the ~-y phase transition are reached 
after which a change in the nature of the dependence occurs and the quantity oo decreases 
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TABLE 3 

Metal 

A! 
Fe 
Cu 

E, GPa 

calc. exp. 

65 68,5 
17i 180 
tt4 tt2 

ca!c. 

0,~6 
0,32 
0,37 

exp. 

0,36--0,37 
0,3i 

0,36--0,39 

more smoothly as T increases (point 1 in Fig. 6). At first glance it may appear that such 
a nature for the dependence indicates that it has been incorrectly calculated. However, it 
turns out that all the calculated dependences oo(T) both for iron and for copper and aluminum 
repeat qualitatively the temperature dependence of a strength characteristic of the materials 
such as the hardness. These dependences (Vickers hardness Hv) taken from [20, 21] are also 
given in Fig. 5 (points 3) and Fig. 6 (points 2). 

One can understand the cause of the nonobvious correlation of the dependences oo(T) 
and Hv(T ) by recalling the physical meaning embodied in the concepts of hardness and the 
characteristic deceleration stress. Hardness has the physical meaning of the average con- 
tact stress on the surface of an impression in the process of its formation [22] and thus 
characterizes the resistance of the material to elastoplastlc strain. Speclal investigations 
show that hardness is very sensitive to changes in the defect structure of a material. The 
deceleration stress characterizes the resistance to suprabarrier glide of dislocations pro- 
duced by the existence of potential relief of the lattice and the presence of impurities and 
other types of defects in the crystalline structure. Since plasti 9 flow is determined in the 
first place by the motion of dislocations, the characteristic deceleration stress is also a 
certain characteristic of the resistance to plastic deformation. Of course, the characteris- 
tics under discussion are obtained upon the realization of different stress--strain states; 
therefore their numerical values differ significantly. 

A consequence of the established connection between ~o(T) and Hv(T) is the possibility 
of the use of Eq. (13) with appropriately selected constants for the description of the 
temperature dependence of the hardness in those cases in whlch it is valid for the character- 
istic deceleration stress. One should note that Eq. (13) itself, which is obtained under 
very strong restrictions and for a completely specified process, is not valid for all 
materials and deformation conditions. 

The results of calculations performed on the basis of Eqs. (5) and (6) are given in 
Table 2. These calculations were performed mainly for the purpose of clarifying the appli- 
cability of (5) and (6) to the description of the process of relaxation of tangential stresses. 
They showed that these relationships provide a correct description of the behavior of mate- 
rials under the conditions being discussed. Nevertheless, the use of Eqs. (3) and (4) seems 
more preferable, since they have a more rigorous foundation and permit Eq. (7) to be con- 
structed with a smaller number of fitting parameters. 

A calculation of the complete ~--~x diagram of a given material under the conditions of 
uniaxial tension (see Fig. i) has been performed in the course of the solution of the problem 
of the stretching of a rod. This fact permits determining not only the plastic but also the 
elastic characteristics of a metal. A comparison of the calculated and experimental values 
of the Young modulus E and the Polsson coefficient ~ is given in Table 3. The values are 
found to be in good agreement, which indicates once more the applicability of the construc- 
tion performed to the solution of problems of dynamic deformation of metals. 
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